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Abstract
The method for the determination of the position of the pair of complex
conjugate branch points suggested in previous studies is generalized here. The
method is modified in order to consider cases where the value of the function
at the singularity is not real. A method is proposed for the determination of
single isolated singularities located either on the real axis or in the complex
plane. These methods are applied to three eigenvalue problems, namely the
bounded delta-potential atom, the Mathieu equation and the hydrogen atom in a
spherically symmetric cavity. We show that the position of the singularities can
be obtained very accurately with minimal number of perturbation coefficients.
If we take the characteristic polynomial for variational energy levels as an
approximate implicit equation, the method can be used for the investigation
of the analytic structure of the energy considered as a function of complex
coupling constant. In particular, we show that the first singularity appears at
the point of intersection of the ground and the first excited states. The second
singularity, when the first and second excited states intersect, can be determined
either from the expansion at the first singularity or from the expansion of the
second excited state at the origin.

PACS number: 45.10.Hj

1. Introduction

This paper is in a sense a continuation of the studies in [1, 2]. In [1], a method for
the determination of the position of the pair of complex conjugate branch points from the
perturbation series was suggested. This step was very important, because when the singularities
lie in the complex plane, the perturbation series exhibits oscillatory behaviour. In such a case,
the methods of classical analysis for the determination of the radius of convergence of power
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series, namely D’Alembert and Cauchy criteria, cannot be used. The method proposed in
[1] was further substantially extended in [2] by expanding the function around the singularity
beyond the leading term. This method, when applied to the anharmonic oscillator, yielded the
position of the singularity and hence the radius of convergence of the series with much greater
accuracy and using much fewer perturbation coefficients than with the original formulation
given in [1].

The key idea of the method suggested in [1, 2] is the following. Let us consider an
implicitly defined function E(z),

G(E(z), z) = 0. (1)

Let us then expand the function E(z) as a power series in the powers of variable z, namely

E(z) =
∞∑

n=0

Knz
n. (2)

The behaviour of this perturbation series as well as its radius of convergence is determined by
the nature and the position of the closest singularity z0 of the expanded function to the origin.
For the purposes of this paper it is sufficient, although not necessary [1, 2], to assume that the
singularity z0 is a square-root branch point. As argued in [3], this type of singularities is most
likely to appear in eigenvalue problems, see also [4, 5]. If the function E(z) is an eigenvalue
of a Hermitian operator, it must have the property E(z∗) = E∗(z). It was suggested in [1, 2]
to write this function in the form

E(z) = b1[(z − z0)(z − z∗
0)]

1/2 + b3[(z − z0)(z − z∗
0)]

3/2 + · · ·
+ b0 + b2(z − z0)(z − z∗

0) + b4[(z − z0)(z − z∗
0)]

2 + · · · . (3)

In this paper, we first investigate this expansion by studying equation (1) around z0 for the
problem discussed in [1]. We find that for eigenvalue problems, it is not very likely that
the value of the function at the singularity is real. Consequently, the assumption made in
[1, 2], namely that the value of the coefficients bi in equation (3) is real, is not likely to
hold for physically interesting eigenvalue problems. Moreover, we observe that expanding the
function in the variable [(z−z0)(z−z∗

0)]
1/2 introduces, in most cases, an artificial singularity at

z = Re(z0). Therefore, equation (3) is not likely to be the best representation of the behaviour
of the eigenvalue in the vicinity of its singular points. In fact, assumption (3) is too strong. It
is just sufficient for the function E(z) to be an eigenvalue of a Hermitian operator and to have
branch points at z0 and z∗

0.
In this paper, an alternative expression to replace equation (3) is sought. We first consider

the existence of a single singularity, whether lying on the real axis or in the complex plane. We
derive equations for the determination of the position of the singularity from the perturbation
coefficients. An alternative method for determination of the single singularity lying on the
real axis was suggested in [6]. We believe that the method described here is somewhat simpler
from both a conceptual and a technical point of view. In the development of our method
suggested here, we were inspired by the procedure given in [2] and proceeded along its lines.

After establishing this method, it is then natural to ask for its generalization for the case
of the pair of complex conjugate singularities. We derive equations for the determination of
the position of the singularities from the perturbation series. In addition, the equations derived
here asymptotically approach those given in [1, 2]. Therefore, for large order perturbation
theory, they yield the same results. However, for low order they differ. Examples presented
in this paper illustrate a better accuracy of our method than in [1, 2] for low orders of the
perturbation theory.
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Finally, a method is suggested for the determination of the analytic structure of the
function for which the exact implicit equation is not known. This is the case for most of
physically interesting eigenvalue problems. Using the Ritz variation method, we can consider
an approximate implicit equation. This approximate implicit equation is obtained by first
truncating the Hamiltonian matrix at a certain size and then by calculating its characteristic
polynomial. Expanding the energy E(z) in the series in the coupling constant z, equation (2),
we obtain the ‘variational’ perturbation coefficients. These ‘variational’ perturbation
coefficients differ from the ‘exact’ ones. In the ‘exact’ perturbation theory, we should sum
over an infinite number of the intermediate states. For example in the second order of the
perturbation theory, we have

K2 =
∞∑

n=1

W 2
n0

E
(0)
0 − E

(0)
n

, (4)

where Wn0 are matrix elements of the perturbation between unperturbed states and E(0)
n are

the unperturbed energies. In the ‘variational’ perturbation theory, we sum implicitly only over
intermediate states belonging to the truncated basis set. For example in the second order, we
have

K2 =
O∑

n=1

W 2
n0

E
(0)
0 − E

(0)
n

, (5)

where O is the order of the truncated Hamiltonian matrix. This summation is, however,
only implicit since we do not actually use these formulae to calculate the coefficients
Ki . These are calculated by expanding the characteristic polynomial into the series in
equation (2) and comparing the same powers of z. Consequently, the position of the branch
points of the energy determined from the characteristic polynomial for variational energy levels
differs from the exact one. However, as argued in [3] for regular perturbation theory, if the
exact implicit equation is replaced by the characteristic polynomial for variational eigenvalues,
then the analytic structure of the energy considered as a function of the coupling constant is
not qualitatively changed. Truncating the Hamiltonian matrix at a certain size and calculating
its characteristic polynomial, should thus yield meaningful results. By increasing the size of
the Hamiltonian matrix, we achieve a clear improvement of this approximate implicit equation
towards the exact one. Since the examples considered in this paper belong to the class of
regular perturbation theories, we use the characteristic polynomial for variational eigenvalues
for the determination of the analytic structure of the energy considered as a function of the
complex coupling constant. Thus, the method given here can serve to investigate the analytic
structure of the eigenvalue problem independently to the ones given in [4, 7, 8]. In addition,
this method provides a basis for the exact determination of the singularities in the following
sense. We find that by expanding the energy at the first branch point where the ground and first
excited states intersect, we determine the next branch point where the first and second excited
states intersect. This point is identical with the one determined from the expansion of the
second excited state of the energy at the origin. It is likely that the third branch point, where
the second and third excited states intersect, can be determined either from the expansion of
the energy at the point where the first and second excited states intersect or from the expansion
of the third excited state of the energy at the origin. Presumably, analogous relations hold for
additional singularities. That means that we can reach the nth branch point either by starting
from the ground-state energy at the origin z = 0 and then passing through the points of the
intersection of the ground and first excited states, the first and second excited states and so
on or by expanding the nth state of the energy at the origin. This statement is in one-to-one
correspondence with the conclusion drawn in [4] for the case of the anharmonic oscillator
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described by the Hamiltonian H = −d2/dx2 + x2/4 + λx4/4. The analytic structure of the
eigenvalue E considered as a complex function of the coupling constant λ, E = E(λ), was
investigated by WKB method in the complex plane and it was found that ‘once one knows the
ground-state energy of the anharmonic oscillator, one knows all the energy levels by analytic
continuation. Or, in other words, the physical energy levels of the anharmonic oscillator for
a given positive real λ are the positive real values of E(λ) on each of the infinite number of
branches of a Riemann surface. Each energy level corresponds to a sheet of this Riemann
surface’ [4, p 1242]. It follows from this that all the singularities of the energy should be
possible to determine from the perturbation expansion of all the states of the energy at the
point z = 0. Then we also have the method of determining the number of the branch points
of the energy exactly, other than increasing the size of the Hamiltonian matrix and calculating
its characteristic polynomial; namely, to calculate the ‘exact’ perturbation expansion for the
corresponding number of the energy levels at the point z = 0 using standard formulae. For
example, in the second order this standard formula reads as equation (4); for higher orders
see any textbook on quantum mechanics. We note, however, that there is no clear and simple
way how to expand the energy at the branch point within the ‘exact’ perturbation theory.
Therefore the results about analytic structure of the energy can be established only within the
‘variational’ perturbation theory, i.e. using characteristic polynomial for variational energies
as an approximate implicit equation.

This paper is organized as follows. In section 2 we summarize the method suggested
in [1, 2] and apply it, as in [1], to the bounded delta-potential atom. We show that with the
improvement of the method given in [2], the position of the branch point can be determined
with greater accuracy and considerably fewer perturbation coefficients than with the original
method. We note, however, that the value of the function at the singularity is not real. In
section 3, we then suggest a method for the determination of the position of the single isolated
singularity from the perturbation series. We apply this method first to the Mathieu equation to
demonstrate its validity for the case of the singularity lying on the real axis, and then second
to the bounded delta-potential atom to demonstrate its validity when the singularity lies in the
complex plane. In section 4, the method suggested in section 3 is modified in order to study the
pair of complex conjugate branch points. We apply the method to the bounded delta-potential
atom and to the hydrogen atom in a spherically symmetric cavity. The analytic structure of
the energy of the hydrogen atom in a spherically symmetric cavity considered as a function of
the coupling constant that is equal to the product of the nuclear charge and radius of the cavity
is, for the first time, explicitly presented here. In the case of the bounded delta-potential atom
we compare the performance of the method suggested in section 4 with the methods given in
[1, 2]. In the conclusions, the discussion of the method and perspectives of its further
development including possible physical applications are outlined.

2. The method

In this section, we first summarize the method proposed in [1, 2] and then apply it to the
bounded delta-potential atom. The performance of the improved method [2] is compared with
the original one [1]. We point out the shortcoming of both methods.

2.1. Description of the method

As mentioned in the introduction, let us suppose that in the neighbourhood of the branch point
z0 the energy can be written as
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E(z) = b1[(z − z0)(z − z∗
0)]

1/2 + b3[(z − z0)(z − z∗
0)]

3/2 + · · ·
+ b0 + b2(z − z0)(z − z∗

0) + b4[(z − z0)(z − z∗
0)]

2 + · · ·
= b1|z0|(u2 − 2u cos ϕ + 1)1/2 + b3|z0|3(u2 − 2u cos ϕ + 1)3/2 + · · ·

+ b0 + b2|z0|2(u2 − 2u cos ϕ + 1) + b4|z0|4(u2 − 2u cos ϕ + 1)2 + · · · , (6)

where bi are supposed to be real constants, u = z/z0 and ϕ = arg z0.
As shown in [2, 9], this series expansion leads to the following behaviour of the

perturbation coefficients Kn,

Kn = A
cos(nϕ + δ)

|z0|nn3/2
[1 + O(1/n)]. (7)

The oscillatory character of these coefficients prevents the use of D’Alembert or Cauchy
convergence criteria. To determine the radius of convergence, we make use of the fact that, as
observed in [2], the function (u2 −2u cos ϕ +1)αi is the generating function of the Gegenbauer
polynomials C(−αi )

n (cos ϕ) [10]:

(u2 − 2u cos ϕ + 1)αi =
∞∑

n=0

unC(−αi )
n (cos ϕ), (8)

where α1 = 1
2 , α2 = 3

2 and so on. The Gegenbauer polynomials satisfy the following
recurrence relation [10]:

(n − 2αi − 1)C
(−αi )
n−1 − 2(n − αi)(cos ϕ)C(−αi )

n + (n + 1)C
(−αi )
n+1 = 0. (9)

The terms in equation (3) with integer powers do not influence the large-order behaviour
of the Kn coefficients. Consequently, the radius of convergence is not affected by these
terms with integer powers. Thus, comparing equations (2), (3) and (8), we get the following
expression for the Kn coefficients at large-order, namely

Kn =
j∑

i=1

x(i)
n , (10)

where j is the number of terms with half integer power in equation (3) and

x(i)
n = b2i−1

|z0|n−2i+1
C(−αi )

n (cos ϕ). (11)

Substituting the polynomials C(−αi )
n from equation (11) into equation (9) yields

(n − 2αi − 1)x
(i)
n−1 − 2(n − αi) Re(z0)x

(i)
n + (n + 1)|z0|2x(i)

n+1 = 0, (12)

where we used the fact that Re(z0) = |z0| cos ϕ. In order to implement the method, we have
to consider equation (10) for n running from (n0 − 1) to (n0 + 2j), equation (12) for i running
from 1 to j , and n running from n0 to (n0 + 2j − 1). The choice of n0 and j is arbitrary, but
the accuracy of the final results strongly depends on these values. To improve the accuracy,
we should increase n0 as well as j . However, it is of interest to find the lowest values of
these parameters that yield meaningful, i.e. accurate enough, final results. This is because, in
more complicated perturbation problems, the calculation of the perturbation coefficients poses
serious computational problems. For this reason, the motivation of this paper was to minimize
the number of such coefficients rather than to obtain the best possible final results.

From a computational point of view, it is interesting to note that this procedure requires
the solution of a system of 2j 2 + 2j linear equations with 2j 2 + 2j unknowns x(i)

n , as well as
the solution of a system of two nonlinear equations with two unknowns Re(z0) and |z0|2. The
solution of the linear system is obtained using a MAPLE procedure while the solution of the
nonlinear system requires the application of the two-dimensional Newton–Raphson method.
After determining z0 and x(i)

n , we can calculate the coefficients b2i−1 from equation (11) for
n = n0.
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Table 1. The position of branch point of the bounded delta-potential atom calculated by the method
described in section 2. n0 is equal to 5 and j denotes the number of terms taken in equation (10).
The number of the needed perturbation coefficients is n0 + 2j for j > 1 and n0 + 1 for j = 1. The
percentage error is calculated with respect to the exact value z0 = 1.895 282 288 + i3.719 436 139.
This result is obtained with 100 perturbation coefficients and taking eight terms in equation (10),
see also [1].

j |z0| (error (%)) ϕ (error (%))

1 4.765 571 544 (14.1) 1.039 111 512 (5.49)
2 4.259 363 383 (2.03) 1.100 688 790 (0.10)
3 4.206 330 302 (0.76) 1.097 088 165 (0.22)
4 4.188 992 766 (0.34) 1.096 816 518 (0.24)
5 4.181 378 948 (0.16) 1.097 128 616 (0.21)

2.2. Bounded delta-potential atom

To illustrate the method described above, let us consider, as in [1], the one-dimensional
bounded delta-potential atom[

−1

2

d2

dx2
− Zδ(x)

]
ψ(x) = Ẽψ(x). (13)

Here we impose the boundary condition ψ(±L) = 0, because the particle moves inside
impenetrable walls fixed at x = ±L. Since the value of the odd parity solutions at the origin
is zero, only the even parity solutions differ from those of the free particle in the box. They
are the roots of the equation, see e.g. [11],

z = E1/2 cot E1/2, (14)

where z = ZL and E = 2L2Ẽ. Differentiating equation (14) with respect to E and setting
dz/dE = 0, we get that the singularities of the energy correspond to the roots

2E1/2 = sin 2E1/2. (15)

As pointed out in [1], the series (2) is easier to calculate, not from equation (14), but from the
differential equation

(E + z2 − z)E′ + 2E = 0, (16)

which is obtained by differentiating equation (14) with respect to z. Substituting now
expansion (2) into equation (16), we obtain the following recurrence relation for the
perturbation coefficients: K1 = −2 and

Kn+1 = 1

K0(n + 1)


(n − 2)Kn − (n − 1)Kn−1 −

n−1∑
j=0

(j + 1)Kj+1Kn−j


 (17)

for n � 1, where K0 = (2i + 1)2π2/4 and i denotes the state of the energy. We note that
equation (28) in [1] contains small typographical errors. We also note that the radius of
convergence for the ground state, i = 0, is not infinite as assessed in [1], but it is the same as
for the first excited state when i = 1.

After applying the method described in section 2, very accurate numerical results are
obtained for the ground state using only few perturbation coefficients Kn, as can be seen in
table 1. We note that greater accuracy can be achieved by using larger number of perturbative
coefficients and by increasing the number of terms in the series expansion. Working with 64
digits, taking n0 = 40 and eight terms in equation (10), we obtain z0 = 1.895 282 + i3.719 436,
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this result improving the one obtained in [1] where 500 coefficients and only one term in
equation (10) were considered.

However, assumption (3) is not satisfied, namely, the coefficients bi are not real in this
case. To see this observation, we analyse equation (16) at the singular point z0. For that
purpose, we make the transformation

t = [(z − z0)(z − z∗
0)]

1/2. (18)

Inverting this equation, we obtain

z = Re(z0) ± i
√

(Im(z0))2 − t2 (19)

and substitute it into equation (16)

[E + (Re(z0) + i
√

(Im(z0))2 − t2)2 − (Re(z0) + i
√

(Im(z0))2 − t2)]

× dE

dt

i
√

(Im(z0))2 − t2

t
+ 2E = 0. (20)

Substituting E by the series

E(t) =
∞∑
i=0

bit
i , (21)

expanding equation (20) in the powers of t and comparing terms with the same powers of t,
we get b0 = z0 − z2

0, b1 = 2
(−z0 + z2

0

)1/2/
(2i Im(z0))

1/2 and so on. Clearly, the coefficients
bi are complex. Furthermore, after calculating the expansion in equation (21) to large order,
we observe two series: one for the real part of the bi coefficients, one for the imaginary part.
In addition, each of these two series possesses two subseries, one for odd powers of t and one
for even powers. There are thus four series altogether. We note that the signs in all these
series do not change, implying that the singularity is on the real axis in the variable t. Using
the method explained in detail in section 3.1, we find that the radius of the convergence of all
four series is the same and is determined by the square-root branch point at t2 = (Im(z0))

2.
Therefore, the real axis is outside the radius of convergence of the series in equation (21).
The radius of convergence just touches the real axis at the point z = Re(z0). If we sum the
series in equation (21) at this point, on the border of convergence, the real part approaches
the correct value 18.464 069, while the imaginary part slowly converges to zero. This result
explains the apparent contradiction that equation (21) has an imaginary part and that the value
of the energy for the real values of the coupling constant is real.

However, the singularity at |t | = Im(z0) found above is an artificial one, introduced by
equation (18). The reason is that the inversion, equation (19), has branch point at t = Im(z0).
If the square-root factors in the implicit equation do not cancel out then this singularity enters
into the function E(t). That the function E(z) does not have at the point z = Re(z0) any
singularity is easily seen from equation (14). This can also be seen when we use, instead of
equation (18), the transformation

u =
(

1 − z

z0

)1/2

. (22)

This transformation has the advantage that its inversion is

z = z0(1 − u2), (23)

and therefore no artificial square roots are introduced into equation (1) by such a transformation.
Consequently, we can expand the function E(u) in the series

E(u) =
∞∑
i=0

ciu
i . (24)
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Substituting equations (23) and (24) into equation (16), we find the following expressions for
the coefficients of the expansion: c0 = z0 − z2

0, c1 = ±2(−z0)
1/2c

1/2
0 and

ck = − (−z0)
k/2

(k + 1)c1

{
k−2∑
n=1

ck−ncn+1(n + 1) + [(k − 1)(2z0 − 1) + 4]ck−1 + (k − 3)ck−3

}
, (25)

for k larger than 1. Calculating about fifty of these coefficients we determine the position
z = z2 of the next singularity that differs from the position z = Re(z0) of the singularity
determined from series (21). The position z2 of the next singularity will be determined in
section 3.3.

In the other examples treated in this paper, namely the Mathieu equation and the hydrogen
atom in a spherically symmetric cavity, the same conclusions can be drawn. The coefficients
bi in equation (3) are not real and the introduction of transformation (18) into equation (1)
just creates an artificial singularity at the point z = Re(z0). Nevertheless, as can be seen from
table 1, the method still provides very accurate estimates of the position z0 of the first
singularity, even if equation (3) is not satisfied. Therefore, in the following sections, we
modify and clarify the method for the cases when the coefficients bi in equation (3) are not
real.

Before doing so, it will be helpful to first consider the case when we have just a single
isolated singularity.

3. Single isolated singularity

In this section, we propose the method for the determination of one isolated singularity from the
perturbation series. We apply the method to Mathieu equation and the bounded delta-potential
atom.

3.1. Description of the method

Let us assume that the function E(z) behaves at the neighbourhood of the singularity as

E(z) = c1

(
1 − z

z0

)α1

+ c2

(
1 − z

z0

)α2

+ · · · , (26)

where αi are supposed to be rational and non-integer. If they are positive integers, they do not
influence the large-order behaviour of series (2).

First, we show how from this assumption the large-order behaviour of Kn coefficients
can be deduced or, conversely, how we can determine equation (26) from large order of Kn

coefficients. For this purpose, we use the generalized binomial theorem and write(
1 − z

z0

)α

=
∞∑

n=0

�(α + 1)

�(n + 1)�(α − n + 1)

(−1)n

zn
0

zn. (27)

Considering only the first term in equation (26), substituting equation (27) into equation (26),
and then comparing terms of the same powers of z with equation (2), we get for large n

Kn ≈ c1
�(α1 + 1)

�(n + 1)�(α1 − n + 1)

(−1)n

zn
0

. (28)

To arrive at the asymptotics of the coefficients Kn we use the asymptotics of the product of
gamma functions, namely

�(n + 1)�(α − n + 1) = πn1+α(−1)n

sin(π(α + 1))
[1 + O(1/n)], (29)



Determination of singularities of a function from its perturbation expansion 4017

and insert it into equation (28) to get

Kn ≈ c1
�(α1 + 1) sin(π(α1 + 1))

π

1

n1+α1zn
0

. (30)

The values of z0 and α1 can be deduced as follows. Taking the ratio of two successive
coefficients Kn, we obtain from equation (28)

Kn−1

Kn

≈ z0
n

n − α1 − 1
. (31)

Taking the limit of this ratio to infinity, we obtain an estimate of z0. Inserting this estimate of
z0 back to equation (31), we get an estimate for α1

α1 ≈ n

(
1 − z0Kn

Kn−1

)
− 1. (32)

Let us now describe how equation (26) can be used for very accurate determination of
z0 and the coefficients ci if the values of the coefficients αi are known. Taking j terms in
equation (26), using equation (27) and comparing again terms with the same powers of z in
equations (26) and (2), we obtain

Kn =
j∑

i=1

x(i)
n , (33)

where

x(i)
n = ci

�(αi + 1)

�(n + 1)�(αi − n + 1)

(−1)n

zn
0

. (34)

Considering equation (34) for successive n and taking the ratio of such equations, we express
x

(i)
n−k through x(i)

n

x
(i)
n−k

x
(i)
n

= n(n − 1) · · · (n − k + 1)

(n − αi − 1)(n − αi − 2) · · · (n − αi − k)
zk

0. (35)

Inserting this into equation (33), we get a system of j + 1 equations

Kn0−k =
j∑

i=1

x(i)
n0

n0(n0 − 1) · · · (n0 − k + 1)

(n0 − αi − 1)(n0 − αi − 2) · · · (n0 − αi − k)
zk

0, (36)

for k going from 0 to j . We first solve j linear equations for x(i)
n0

using MAPLE procedure
and then insert them into the last nonlinear equation for z0. This equation is solved by the
Newton–Raphson method. The coefficients ci are then determined from equations (34) for
n = n0.

To illustrate the method, we first consider the case when the singularity lies on the real
axis. In the following subsection, we consider the case when the singularity is lying in the
complex plane.

3.2. Odd parity solution of the Mathieu equation with period π

The Mathieu equation arises in the study of motion of a particle in a periodic potential. This
equation reads [

− d2

dx2
+ 2q cos(2x)

]
ψ(x) = Eψ(x). (37)
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Table 2. The position of branch point of odd parity solution of Mathieu equation with period π

calculated by the method described in section 3 from 10 perturbation coefficients. The perturbation
coefficients were obtained by expanding the characteristic polynomial that was calculated from
20 basis functions. j denotes the number of terms taken in equation (33). The percentage error
is calculated with respect to the exact values z0 = −48.010 414 048, c1 = −6.209 046 297 and
c3 = 0.218 203 105. The exact value of z0 was calculated using 130 perturbation coefficients and
10 terms in equation (33). The exact values of the coefficients c1 and c3 were obtained by inserting
equation (24) into the characteristic polynomial, see the text for details.

j z0 (error (%)) c1 (error (%)) c3 (error (%))

1 −48.050 907 031 (0.84 × 10−1) −6.300 919 191 (0.14 × 101)
2 −48.009 799 452 (0.12 × 10−2) −6.207 103 750 (0.31 × 10−1) 0.227 335 819 (4.18)
3 −48.010 158 287 (0.53 × 10−3) −6.208 173 405 (0.14 × 10−1) 0.222 814 664 (2.11)
4 −48.010 365 007 (0.10 × 10−3) −6.208 883 238 (0.27 × 10−2) 0.218 993 430 (0.36)
5 −48.010 387 567 (0.55 × 10−4) −6.208 965 084 (0.12 × 10−2) 0.218 512 198 (0.14)

We will consider only the odd parity solutions with period π . This means that the unperturbed,
i.e. for q = 0 in equation (37), wavefunctions and energies are of the form

ψ(0)
n =

√
2

π
sin(2nx), E(0)

n = (2n)2. (38)

The matrix elements of the perturbation W = 2 cos(2x) between these unperturbed states have
a very simple form

Wn,m = δm,n±1. (39)

As mentioned in the introduction, we will work with an approximate implicit equation
for the energy E and coupling constant q. We calculate the characteristic polynomial of
this problem considering 20 basis functions in equation (37). Expanding this characteristic
polynomial in powers of q we find that all perturbation coefficients with odd powers of q
vanish. Calculating series (2) with z = q2 for the lowest state n = 1 to the large order, we find
that the coefficients alternate sign. That means that the closest singularity lies on the real axis.
Thus, we determine the position of the singularity by the method described in the previous
subsection, where we take α1 = 1/2, α2 = 3/2, α3 = 5/2 and so on.

The position of the singularity where the ground and first excited states of given symmetry
intersect obtained with just ten perturbation coefficients is given in table 2. This value
does not differ much from the exact position of the singularity of the lowest eigenvalue of
equation (37). Due to the simplicity of the matrix elements of interaction (39), the first
20 perturbation coefficients calculated from the characteristic polynomial of Hamiltonian
matrix of order 20 are exact.

The results displayed in table 2 can be verified independently of the numerical method
described in this section, in the following way. The square-root branch point is at the point
where the ground and the first excited states of the energy intersect. Therefore, the two lowest
roots of the characteristic polynomial calculated at the point z = z0 = −48.010 414 048
(see table 2) should be identical. Calculating these roots, we obtain E1 = 11.190 4715
and E2 = 11.190 4756, a satisfactory agreement indeed. If we make the transformation
u = (1 − z/z0)

1/2 and expand the energy and the characteristic polynomial in the powers of
u, we obtain equations for the coefficients ci in equation (24). Since the calculations of these
coefficients are not entirely straightforward, let us discuss their calculation in more detail. For
the sake of transparency we shall illustrate the calculation on the characteristic polynomial,
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obtained from equation (37) considering just four basis functions. Expanding the characteristic
polynomial in powers of u yields, in the zeroth order, just the equation for the eigenvalues

G(E = c0, z = z0) = 0. (40)

Considering four basis functions in equation (37) the last equation reads

G(c0, z0) = c4
0 − 120c3

0 + (4368 − 3z0)c
2
0 + (188z0 − 52 480)c0

+ 147 456 − 2624z0 + z2
0 = 0. (41)

The two lowest roots of this equation are c0 = 11.1897 ± i0.0725. In the first order of u, we
get in general

c1
∂G(E, z)

∂E

∣∣∣∣
E=c0,z=z0

= 0. (42)

With the characteristic polynomial (41) we obtain

c1
[
4c3

0 − 360c2
0 + (8736 − 6z0)c0 + 188z0 − 52 480

] = 0. (43)

This, however, is not an equation for c1 because the intersection of two eigenvalues at the
point z0 simply means that the derivative of the secular polynomial with respect to the energy
at this point is zero [3]. This could be well illustrated numerically because from equation (43)
we get the lowest root c0 = 11.1899. Using 20 basis functions in equation (37) we get
from equation (42) the lowest root c0 = 11.190 4735. In the second order, we get using
equation (42), a quadratic equation for c1 without a linear term. For example, from the
characteristic polynomial (41) we obtain

c2
[
4c3

0 − 360c2
0 + (8736 − 6z0)c0 + 188z0 − 52 480

]
+ z0

(
2624 − 2z0 − 188c0 + 3c2

0

)
+

(
4368 − 3z0 − 360c0 + 6c2

0

)
c2

1 = 0. (44)

Since the first term vanishes we get c1 = ±6.2099. Considering 20 basis functions we obtain
c1 = ±6.209 046 297. The two signs correspond to the fact that we can approach the branch
point either from the ground state n = 1 or from the first excited state n = 2. In the next
orders of u, we get in the kth order of u, a linear equation for ck−1. The coefficients ck are in
the kth order multiplied by ∂G(E, z)/∂E|E=c0,z=z0 that vanishes. For example, in the fourth
order of u we get from the characteristic polynomial (41)

c4
[
4c3

0 − 360c2
0 + (8736 − 6z0)c0 + 188z0 − 52 480

]
+ 3350.1237

− 15337.9733c3 = 0 (45)

where we inserted the values of z0, c0 and c1 obtained earlier, the coefficient c1 that with the
negative sign, and c2 = −1.1745. From the last equation we obtain c3 = 0.2184, considering
20 basis functions we get c3 = 0.218 203 105. The coefficients c1 and c3 are in excellent
agreement with the coefficients obtained from equation (34), as can be seen from table 2.

3.3. Bounded delta-potential atom continued

Let us now consider a case where the isolated singularity lies in the complex plane, namely
the case provided by equation (24) of the eigenvalue of the bounded delta-potential atom
at the singular point z0. The energy E(z) has complex conjugate branch points with respect
to the variable z. However, in the variable u, the pairs of the branch points are not complex
conjugates. Therefore, the next singularity of the function E(z) should be obtained by
applying the method suggested in this section. Looking at table 3, we see that this is really
the case. When transforming the singularity from the variable u to the variable z, we find
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Table 3. The position of the second branch point of the bounded delta-potential atom calculated
by the method described in section 3 from 50 perturbation coefficients ci given by equation (25).
j denotes the number of terms taken in equation (33). The percentage error is calculated with
respect to the exact value z2 = 2.180 218 061 + i6.932 966 534. This exact value was obtained
from the series (2) for the second excited state of the energy with 100 perturbation coefficients and
taking 8 terms in equation (10), see also [1].

j |z2| (error (%)) arg z2 (error (%))

1 7.269 319 869 (0.22 × 10−1) 1.266 652 807 (0.42 × 10−1)
2 7.267 771 248 (0.10 × 10−2) 1.266 075 607 (0.32 × 10−2)
3 7.267 679 138 (0.20 × 10−3) 1.266 121 971 (0.41 × 10−3)

that this second singularity exactly coincides with the singularity obtained from the series in
equation (2) for the second excited state i = 2.

From this, we can conclude that the closest singularity to the origin is the one where
the ground and first excited states intersect. The next singularity is the one where the first
and second excited states intersect. This singularity can be reached from the ground state by
passing through the first singularity. As mentioned in the introduction it is likely that every
additional singularity can be reached either by expanding the energy at the origin for the next
excited state in the series in equation (2) or by expanding the energy in the previous singularity
in the series in equation (24). We verified this statement also for the third branch point.

4. Pair of complex conjugate singularities

In the previous section, we showed how to obtain the position of the singularity closest to the
point where the function is expanded. Since the method holds also when the singularity is in
the complex plane, it is natural to ask what happens if the closest singularities to the origin are
the pair of complex conjugate branch points.

4.1. Modification of the method

Let us suppose that the function E(z) has two complex conjugate square-root branch points
and that in the neighbourhood of these points it behaves like

E(z) = c0 + c1

(
1 − z

z0

)1/2

+ c2

(
1 − z

z0

)
+ c3

(
1 − z

z0

)3/2

+ · · · +

+ c∗
0 + c∗

1

(
1 − z

z∗
0

)1/2

+ c∗
2

(
1 − z

z∗
0

)
+ c∗

3

(
1 − z

z∗
0

)3/2

+ · · · . (46)

Note that this assumption is weaker than equation (3). Comparing equations (2) and (46),
we can write in analogy with equations (33) and (34), neglecting the terms with the integer
powers that do not contribute at large order,

Kn =
j∑

i=1

x(i)
n , (47)

where j again denotes the number of terms in equation (46) with non-integer powers and

x(i)
n = (−1)n

�(αi + 1)

�(n + 1)�(αi − n + 1)

(
c2i−1

zn
0

+
c∗

2i−1

z∗
0
n

)
. (48)
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Here, α1 = 1/2, α2 = 3/2 and so on. Note that the last factor can be written in the form(
c2i−1

zn
0

+
c∗

2i−1

z∗
0
n

)
= |c2i−1|

|z0|n 2 cos(ϕn − δi), (49)

where ϕ = arg z0 and δi = arg c2i−1.
Let us consider just one term with i = 1 in equation (47) and equation (48) together

with equation (49) and the asymptotics of the product of Gamma functions, equation (29).
We then obtain equation (7) describing the large-order behaviour of the coefficients Kn where
A = −|c1|/√π and δ = −δ1. From all the derivations given so far in the literature [2, 9], this
one is perhaps the most simple.

A procedure to determine the position of the singularity at z0 follows. Let us consider the
ratios of two successive coefficients x(i)

n

x
(i)
n−1

x
(i)
n

= |z0| n

n − αi − 1

cos[(n − 1)ϕ − δi]

cos[nϕ − δi]
= |z0| n

n − αi − 1
[cos ϕ + sin ϕ tan(nϕ − δi)]

(50)

and

x
(i)
n+1

x
(i)
n

= |z0|−1 n − αi

n + 1
[cos ϕ − sin ϕ tan(nϕ − δi)]. (51)

Adding equation (50) multiplied by |z0|−1(n − αi − 1)/n and equation (51) multiplied by
|z0|(n + 1)/(n − αi), we get

x
(i)
n−1(n − αi − 1)(n − αi) − 2|z0|(cos ϕ)x(i)

n n(n − αi) + |z0|2x(i)
n+1n(n + 1) = 0. (52)

Division of equation (52) by n yields almost the same recurrence relations as in equation (12),
the only difference being in the factor multiplying x

(i)
n−1. However, since

(n − αi − 1)(n − αi)

n
= (n − 2αi − 1)[1 + O(1/n)], (53)

these recurrence relations are identical for large n. For lower n, they can, however, yield
different results. Determining |z0| and ϕ from equations (47) and (52) in the same way as
in section 2, we can use equation (50) to determine δi and then equations (48) and (49) to
determine |c2i−1|.

4.2. Bounded delta-potential atom revisited

To compare this modified method with the original method described in section 2, let us
consider again the series in equation (2) for the ground state of the bounded delta-potential
atom under the same circumstances as in section 2. Table 4 illustrates that the modified
method yields more accurate position of the singularity both in radius and phase than the
method suggested in [1, 2]. Moreover, the coefficients of the expansion c1 and c3 agree with
those calculated from equation (25). The performance of the method again improves with
increasing values of n0 and j .

4.3. Hydrogen-like atom in a spherically symmetric cavity

As a last example, we discuss the problem not treated so far in the literature in a systematic
manner, namely the case of the hydrogen atom in a spherically symmetric cavity. This case
is of interest from a practical point of view, namely for understanding the spatial confinement
effect on different atomic and molecular particles [12] or for bag model of quarks [13], as well
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Table 4. The position of branch point of the bounded delta-potential atom calculated by the method
described in section 4. n0 is equal to 5 and j denotes the number of terms taken in equation (47).
The number of the needed perturbation coefficients is n0 + 2j for j > 1 and n0 + 1 for j = 1. The
percentage error is calculated with respect to the exact values z0 = 1.895 282 288 + i3.719 436 139,
c1 = −16.017 257 367 − i3.180 632 202 and c3 = 7.004 494 836 + i7.096 114 357. The exact form
of the coefficients c1 and c3 was obtained from equation (25).

j |z0| (error (%)) ϕ (error (%))

1 4.934 125 188 (18.1) 0.998 159 396 (9.21)
2 4.073 950 025 (2.40) 1.103 357 857 (0.34)
3 4.162 417 140 (0.28) 1.100 249 138 (0.065)
4 4.172 806 221 (0.040) 1.099 514 977 (0.0012)
5 4.174 562 511 (0.0019) 1.099 366 234 (0.014)

j Re(c1) (error (%)) Im(c1) (error (%))

1 −55.887 592 271 (248) 5.203 740 218 (263)
2 −10.606 537 905 (33.7) −1.843 181 931 (42.0)
3 −14.955 157 101 (6.63) −2.889 697 742 (9.14)
4 −15.855 955 099 (1.00) −3.049 780 180 (4.11)
5 −16.087 927 377 (0.44) −3.086 357 868 (2.96)

j Re(c3) (error (%)) Im(c3) (error (%))

2 17.113 690 772 (144) 12.894 973 458 (81.7)
3 10.163 828 509 (45.1) 10.042 310 613 (41.5)
4 7.276 958 887 (3.88) 8.378 728 760 (18.0)
5 5.984 680 836 (14.5) 7.609 684 417 (7.23)

as from a theoretical point of view as is the calculation of binding energies in the quantum
field theory [14]. There is a long-term confusion on the application of Rayleigh–Schrödinger
perturbation theory on this system going back to the paper by Wigner [15]. Since there is a
continuing interest in this subject [16], we believe that our results will be useful in the study
of this problem.

The Schrödinger equation for the hydrogen-like atom takes the well-known form[
−∇2

2
− Z

r

]
ψ = Ẽψ. (54)

Separating, as usual, the radial and angular degrees of freedom, we get, for the states with
zero angular momentum, the radial equation[

−1

2

d2

dr2
− 1

r

d

dr
− Z

r

]
R(r) = ẼR(r). (55)

We can eliminate the second term by the transformation R(r) = r−1ϕ(r). We then obtain[
−1

2

d2

dr2
− Z

r

]
ϕ(r) = Ẽϕ(r). (56)

If the hydrogen atom is in a box of radius L, we impose the boundary condition on the
wavefunction

ϕ(r = L) = 0. (57)

By the scaling r → rL, we can move the boundary condition to the point r = 1. The scaled
Schrödinger equation (56) then reads[

−1

2

d2

dr2
− z

r

]
ϕ(r) = Eϕ(r), (58)
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Table 5. The position of the first two branch points of hydrogen atom in a spherically
symmetric cavity calculated by the method described in section 4. The perturbation coefficients in
equation (2) were obtained by expanding the characteristic polynomial that was calculated from
15 basis functions. n0 is equal to 90 and j denotes the number of terms taken in equation (47).
The number of the needed perturbation coefficients is n0 + 2j for j > 1 and n0 + 1 for j = 1.

j |z0| arg z0 Re(c1) Im(c1) Re(c3) Im(c3)

1 6.027 383 739 0.802 387 720 12.453 353 −0.062 027
2 6.026 577 753 0.802 347 795 12.162 818 −0.149 503 −8.333 556 −2.592 904
3 6.026 592 196 0.802 349 250 12.170 641 −0.144 670 −7.880 537 −2.301 821
4 6.026 591 758 0.802 349 261 12.170 321 −0.144 624 −7.908 949 −2.298 475
5 6.026 591 774 0.802 349 257 12.170 336 −0.144 647 −7.907 113 −2.301 117

j |z2| arg z2 Re(c1) Im(c1) Re(c3) Im(c3)

1 9.069 691 370 1.018 299 648 24.911 486 6.331 433
2 9.068 250 195 1.018 160 558 24.373 904 5.551 286 −15.345 756 −22.551 988
3 9.068 282 775 1.018 164 559 24.391 177 5.583 231 −14.340 521 −20.676 352
4 9.068 279 296 1.018 164 500 24.387 926 5.581 901 −14.627 860 −20.796 223
5 9.068 279 651 1.018 164 479 24.388 414 5.581 777 −14.569 595 −20.810 375

where

E = ẼL2, z = ZL. (59)

Since the exact wavefunction satisfies the conditions

ϕ(r = 0) = 0, ϕ(r = 1) = 0, (60)

we impose the same conditions on the unperturbed wavefunction. We then get the well-known
solution of the particle in a box, namely

ϕ(0)
n (r) =

√
2 sin(nπr), E(0)

n = (nπ)2

2
. (61)

The matrix elements of the perturbation W = −1/r between the unperturbed states are given
by

Wn,m = −2
∫ 1

0
sin(nπr)

1

r
sin(mπr) dr = −Ci[(n − m)π ] + Ci[(n + m)π ] + ln

n − m

n + m
.

(62)

There is no singularity for the case n = m. In this case Wn,n is given by

Wn,n = − ln(2nπ) + Ci(2nπ) − γ, (63)

where Ci(x) is the cosine integral.
As mentioned in the introduction, we consider an approximate implicit equation for the

energy E(z) and the coupling constant z. We calculate the characteristic polynomial of
the Hamiltonian matrix taking 15 basis functions given by equation (61) and find that the
structure of the series in equation (2) is again the same as in the previous cases. Calculating
100 coefficients of the expansion in equation (2), we find z0 = 4.188 599 ± i4.333 064, see
table 5.

Since we are using ‘variational’ perturbation theory, instead of ‘exact’ perturbation
theory, this position of the branch point differs from the exact one. In the ‘exact’
perturbation theory we sum over infinite number of the intermediate states. In the ‘variational’
perturbation theory used here we are implicitly summing just over 15 intermediate states.
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In contrast to the case of Mathieu equation where, due to equation (39), the perturbation
coefficients were exact to the order of the perturbation theory equal to the size of the truncated
Hamiltonian, in the case of the hydrogen atom in spherically symmetric cavity, the ‘variational’
perturbation coefficients deviate from the ‘exact’ perturbation coefficients very early and
profoundly. To determine the exact position of the branch point, we perform standard
perturbation theory and calculate perturbation energies using 300 and 360 intermediate
states. Only the digits that agree in both cases are considered as significant. We calculate
20 perturbation coefficients in this way and obtain an estimate z0 = 4.212 ± i4.32 using
n0 = 10 and 5 terms in equation (10). It is seen that this value does not differ significantly
from the value obtained from the approximate implicit equation.

The convergence of the method described in this section for the first two singularities
of the approximate characteristic polynomial is displayed in table 5. The values of the
coefficients ci were verified by substituting equation (24) for the energy at the singularities
into the characteristic polynomial in similar way as in section 3.2. We also encountered the
same phenomenon as in the case of bounded delta-potential atom, namely that substituting
equation (24) for the energy at the singular points, we obtain the next singularity exactly at
the same point as the singularity of the next excited state of the energy expanded at the point
z = 0, namely equation (2). It can be seen from table 5 that the convergence of the method is
better for the ground state than for the second excited state.

Applying the method to the next excited states, we observe again that the convergence
slows down. On the basis of this and our experience with other problems, we are tempted to
generalize this decrease of convergence when considering higher excited states, see also [1].

5. Conclusions

In this paper, the method for the determination of the singularities of the function from its
perturbation expansions was suggested and illustrated on three simple eigenvalue problems.

With regard to the convergence of the method, it is observed that it strongly depends on
the nature of the problem. If the singularity, or complex conjugate pair of the singularities,
are well isolated from the other singularities, then the method works very well, as can be seen
from the tables. This requirement is usually satisfied for the ground and first excited states.

However, problems appear when the other singularities are near to the one closest to the
origin. This is usually the case when treating higher excited states [1, 4, 7, 8].

One can see this from equation (7) describing the large-order behaviour of the coefficients
Kn. The contribution of the singularity located at the point z1 to that located at the point
z0, |z0| < |z1|, goes roughly like (|z0|/|z1|)n. Now, if |z1| is close to |z0|, we have to go to
huge values of n to get the ratio (|z0|/|z1|)n substantially smaller than 1, or in the other words,
to suppress the contribution of the singularity at z1 with respect to that at z0.

The presence of another singularity close to the first one has also another consequence.
In all considered eigenvalue problems, the radius of convergence of the series in equation (24)
is smaller than that of the series in equation (2). This means that equations (33) and (47) hold
only asymptotically, i.e. for sufficiently large values of n. If the closest singularity is well
isolated from the others, these asymptotic formulae start to apply very early. In the examples
given in this paper, they are valid in the fourth or fifth order of the perturbation theory. Taking
then more terms in equations (33) and (47) improves the accuracy of the method substantially.
However, when two singularities interfere having similar but not equal distance from the
origin then equations (33) and (47) hold for very large n only and taking more terms in the
expansion does not lead to the improvement in the accuracy. Therefore, future development
of the method should be aimed at dealing with the problem of two interfering singularities.
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We note that the finite radii of convergence of all three eigenvalue problems discussed in
this paper clearly illustrate that the bound states are nonperturbative effects. This means that
they cannot be reached by starting from the description of the free particle in a box, taking
the binding potential as a perturbation and then letting the boundaries of the box to go to the
infinity. This is the main physical result of the paper.

We would like to point out that the method given here is not at all restricted to eigenvalue
problems. The method described in this paper can be used, for example, for the determination
of the parameters of the phase transitions from high or low temperature expansions (see, e.g.,
[17]) or for the determination of the singular points of nonlinear differential equations arising
in classical physics (see, e.g., [18]). Therefore, we believe that it is of general interest.
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